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An accurate and efficient algorithm is given for the numerical integration of a singularly 
perturbed nonlinear two-point boundary value problem arising in the steady-state one- 
dimensional theory of semiconducting materials. The mathematical model assumes that the 
effects of recombination are known a priori, resulting in the third order system (2.1). The 
algorithm is based on a decomposition of the problem into certain subproblems as suggested 
by the asymptotic analysis of D. R. Smith [“On a Singularly Perturbed Boundary Value 
Problem Arising in the Physical Theory of Semiconductors,” Technical Report TUM-MSOZI, 
Technische Universitat Miinchen, Institut fur Mathematik, October 19801. Multiple shooting 
is used to solve certain of the subproblems. The numerical results are in agreement with a 
striking physical effect of W. Shockley, G. L. Pearson, and J. R. Haynes \Bell Syst. Tech. S, 
28 (1949), 344-3663. 

1. INTR~O~JCTI~N 

A numerical study is given of a mathematical model for the steady-state one- 
dimensional behavior of semiconducting materials. The model involves a boundary 
value problem for a nonlinear system of differential equations. The efficient ~urn~ri~ 
calculation of solutions to the problem must confront certain difficulties stem 
from the facts that the problem is singularly perturbed and depends quite sensitively 
on the prescribed boundary values. These’*diffrc&hia are overcome in the ~r~s~~t 
study by a certain decomposition of the iroblem into subp~obl~ms each of whack is 
regular and can be efficiently solved. The decomposition is based on an asymptotic 
analysis of the problem given by Smith [ 121. This approach to the numerical solution 
of singularly perturbed problems is related to that of Mi~ank~r [S], ~labert~ and 
Q’Mailey [6, 93, and others where asymptotic expansions are used in the co~s~r~ct~o~ 
of numerical algorithms for certain! stiff initial and boundary vaiue ~r~~~ern~. 
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Multiple shooting is used in the present case to solve certain of the regular 
subproblems. 

A description of the mathematical model is given in Section 2, and the numerical 
technique of solution is discussed in Section 3. The numerical results are presented in 
Section 4. In Section 5 it is shown that the numerical results confirm the striking 
physical effect of Shockley et al. [I 1, pp. 348-3491 that “in a semiconductor 
containing substantially only one type of current carrier, it is impossible to increase 
the total carrier concentration by injecting carriers of the same type; however, such 
increases can be produced by injecting the opposite type....” 

2. THE MATHEMATICAL MODEL 

The differential equations 

p2g =p - n + D(x), 

dp 
z = PE - I,(x), 

dn 
dx = -nE + I,(x) 

(2.1) 

appear in the steady-state one-dimensional theory of semiconducting devices (cf. 
Shockley [lo], van Roosbroeck [ 141, and Vasil’eva et al. [ 15]), where E = E(x) 
represents the electrostatic field, p =p(x) and rz = n(x) represent the hole and electron 
densities (of positive and negative charges, respectively), IP =1,(x) and I, =1,(x) 
represent the hole and electron currents, ,u is a small positive parameter giving the 
ratio of the thickness of the physical diode junction to the length of the diode, and 
D = D(x) is the doping density which gives the difference between the densities of 
donor electrons and holes. 

We consider a symmetric diode occupying the region -1 <x ( 1 with an abrupt 
junction placed at x = 0, and in this case it suffices to consider the system (2.1) in the 
region 0 < x < 1, where this latter region can without loss be taken to be the n-side of 
the diode. The functions D, Ip and I, are assumed to be given (subject to certain 
conditions listed in [ 12]), and the unknown functions E, p and n are to be determined 
as solutions of (2.1) for 0 < x < 1 subject to the given boundary conditions 

P(0) = n(O) (2.2) 

and 

P(l) = Yp and 41) =W) + Y, (2.3) 
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for given constants yP and yn satisfying 

and D(l)+y,>O. (2.4) 

The conditions (2.4) are related to the physical requirement that the densities p(x) 
and rz(x) should be nonnegative. The parameters yP and yn represent external source 
strengths of holes and electrons at x = 1. The case yn = 0 in (2.3) corresponds to the 
situation in which the electron density agrees with the intrinsic density of donor 
electrons at x = 1. 

The above boundary value problem (2.1)-(2.3) has been studied asymptotically 
and numerically by Vasil’eva and Stel’makh [ 161 in the special case 

yP = yn = 0, rP = I, = Constant, D = Constant. (2.5) 

This special case has also been treated numerically by Ascher [l] with a general- 
purpose spline-collocation code. If one wishes to address the physical effect of 
Shoekley el al. mentioned at the end of Section 1, then it is essential to consider the 
more general boundary conditions of (2.3). 

It is shown in [ I21 that the asymptotic analysis of [ 161 can be generalized to the 
problem (2. I)-(2.3) subject to certain natural conditions on the data. In the general 
case one finds boundary layers at the junction x = 0 and at the endpoint x = I, and 
indeed the boundary layer structure at x = 1 is responsibie for the physical effect of 
Shockley et al. 

In [ 121 it is shown that the solution functions E, p and n can be well-approximated 
(for small pu> on compact subintervals of the open interval (Cl, 1) by the ‘Louter” 
functions E, 3 and n” determined as solutions of the reduced system 

O=p”-f7++(x), 

(2.6) 

dii 
- = -iL?T + I,(x) 
dX 

for 0 < x < I 

subject to the modified boundary (terminal) conditions 

Indeed one has estimates of the form 



312 MAIER AND SMITH 

uniformly for all x on any such compact subinterval of (0, I), for a fixed constant on 
the right side of (2.8) independent of p as ,u --t 0. 

The problem (2.6)-(2.7) has a unique solution which can be conveniently obtained 
from the solution u = u(x) of the auxiliary problem 

u g = [I,(x) -I,(x)] 24 + [D’(x) -I] D(x) forO<x< 1, 

41) = &l)* f 4Y,P(l) + Ynl. 

Once u is determined, then g, F and n” are given as 

i?(x) = I-D’(x) 

4x> ’ 

a> - W) 
lxx) = 2 9 

u(x) -I- D(x) Z(x) = 2 . 

(2.9) 

(2.10) 

(The solution u of (2.9) satisfies u(x) > D(x), so that the densities p” and Z are 
positive; cf. [ 121.) 

3. THE NUMERICAL METHOD 

The method of multiple shooting (cf. Stoer and Bulirsch [13] and the references 
given there) has proved to be a highly accurate method for the numerical solution of 
two-point boundary value problems such as 

Y’ =fcG Y), x E [a, b], 

(3.1) 

where here, as usual, the quantities y, f and r are suitable vector valued functions. 
In the present study we use a realization of multiple shooting given by Bulirsch et 

al. [3]. This realization has been extensively tested in actual computations, cf. 
Diekhoff et al. [5]. The interval a <x < b is suitably subdivided as 

a=x, <x, < a+. <xMel <x,=b (A4 nodes), (3.2) 

and one considers the initial value problems 

Y’ =.m Y) forxE [xj,xj+i], y(xj)=sj (3.3) 
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for j = l,..., M - 1. If y(x; xj, sj) denotes the solution of (3.3), then the vectors sj are 
determined so that the following continuity and boundary conditions hold: 

~j(Sj,Sj+l) :=Y(Xjt.,;Xj,Sj)-Sj+1=0 (3Aa) 

and 

~~--1(s1,~~--I):=~(~,,Y(~~;~~~-1,s~-1))=0. (3.4b) 

The conditions (3.4) define a system of nonlinear equations which is solved 
numerically by a modified Newton method as described, for example, in 1131, with a 
relaxation strategy developed by Deuflhard 141. A key role is played in this 
procedure by the following matrix E; 

E +&+-&GM-,GM-y G,, (3.5) 

where 

Gj :=~(Xj+,;Xj,sI)' j= I,...,M- 1. 
J 

(It will be clear from the context whether E denotes the matrix (3.5) or the eiec- 
trostatic field corresponding to a solution of (2.1)) At the resulting ~~rn~~~~al 
solution point of (3.4), the algorithm computes a certain norm of the matrix E7 which 
will be denoted here simply as norm (E), and which measures the sensitivity of the 
problem relative to variations of s,. 

For the semiconductor problem (2.1j(2.3) the values of norm (E) increase rapidly 
with decreasing values of the positive parameter ,u due to the boundary layer effects 
which occur near the endpoints of the interval 0 6 x < 1, One finds, for example, that 
the values y2 = IO-‘, 10e3, lo-’ lead, respectively, to values norm (E) G 5 X 105, 
4 x 10’6, 7 x 1054. In practice one wishes to consider the boundary value problem 
(2.lj(2.3) for small values of ,B with ,LJ’ on the order of lo-“’ (and smallerl), and in 
such cases it is not feasible to solve (2.1 j(2.3) by r~~It~ple shooting directly over the 
entire interval in singie precision. 

This difficulty is overcome by using the asymptotic analysis of 1121 to decom 
the numerical solution of the singularly perturbe problem (2.1)--(2.3) into the 
numerical solution of three regular problems: the “outer” problem (2.6~(2.53, along 
with two boundary boundary value problems for (2. I), one for each of the two 
endpoints. These latter two boundary value problems are regular, with small norm 
(E), and they can be accurately and efficiently solved by rn~~ti~le shooting. 

Specifically, the regular terminal value problem (2.9) can be solved by (a 
any initial value method, and then (2.10) provides the solution of the outer p 
(2.6 j(2.7). For small p the resulting outer solution provides an acceptable agprox- 
imate solution to the original problem (2.1~(2.3) on compact subinte~als of (0, 1) 
(see (2.8)). However, in general, this outer solution does lzot provide an ~~~~~tab~e 
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approximate solution to (2.1)-(2.3) near the endpoints x = 0 and x = 1 where the 
outer solution fails, in general, to satisfy the boundary conditions of (2.2) and (2.3). 
Adjoining each endpoint there is (in general) a thin boundary layer region interior to 
which certain components of the solution undergo rapid variations. 

To obtain an approximate solution to the original problem near the left endpoint 
we consider an auxiliary boundary value problem for (2.1) on the (left) subinterval 
0 < x < xL, where X, is chosen below so that the subinterval [0, xL] contains the bulk 
of the left boundary layer. We then let *E(x), *p(x) and *n(x) denote the solution 
functions of the original differential equations (2.1) on the interval [0, x,] subject to 
the boundary conditions 

(3.6) 

where J? and n” denote the outer solution functions given by (2.10). This problem 
(2.1), (3.6) is to be solved by multiple shooting. 

Of course if xL is too large, then the problem (2.1), (3.6) will have the same fault 
as the original problem (2.1)-(2.3): norm (E) will be excessively large and it will not 
be feasible to use multiple shooting over the entire interval. However, it follows from 
the analysis of [ 121 that the length of the boundary layer region is quite small, of 
order ,u In p-’ for small ,L > 0, and therefore xL can be taken to be small, typically 
only an order of magnitude larger than ,u. For such values of X, the boundary value 
problem (2.1), (3.6) is regular, and its numerical solution can be readily obtained. In 
practice it is convenient first to make the change of variable xnew = x,,d/,~ which has 
the effect of stretching the small interval [0, x,] to a more convenient size, and then 
the problem is solved in terms of the stretched variable xnew. 

The actual selection of x, is made with the aid of the following estimates valid 
near x = 0, obtained from [ 121 (compare with (2.8)): 

IP(X) -lwl, I@4 - n”(x)1 < A(x;ir)’ + Ocuh 

(E(x) - E(x)J < y + O(u), 
(3.7) 

uniformly for, say, 0 <x < 0.5, where the quantity A = A(x, y) can be defined as 

A(x,,u) := 1 [In%] (3.8) 

The condition (1.17) of [ 121 implies that the outer solution satisfies p”(0) > 0 (see 
also (3.6) and (3.7) of [12]), so that A(x,,u) is exponentially small for large x/p. The 
estimates (3.7), (3.8) are not sharp, but they are adequate for our purpose since we 
only use these estimates to provide a tentative initial choice for x,. The resulting 
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tentative value of xL is then modified using certain numerical tests as describe 
below. 

A satisfactory tentative choice for X, can be determined by the condition 

(3.9) 

for some suitable, fixed small positive constant a. For example, if one takes I, = I, = 
D = yP = 1, yn = 0 and ,U = 0.01 in (3.9), then the values a = 0.1, 0.01 lead, respec- 
tively, to the values XJ,U G 13, 17. In all cases discussed in Section 4, acceptably 
values of x, were found to be obtained with xL/p on the order of 10 to 15, as verified 
by the following error controls. 

As an error control on the numerical solution of the problem (2.13, (3.6) on 
interval [0, x,], we compare the computed value of *E(x,) with the value of the ou 
solution E(x,). As an additional test we also compare the computed values *E(O), 
*n(Q) and *p(Q) with the asymptotic values obtained from [ 121. 

An alternative method for the determination of xL is to compute “E, *p and “n 
corresponding to several different values of x,, and then make a comparison of the 
resulting solution functions. This latter approach has the merit of remaining feasible 
for similar problems for which estimates such as (3.Q (3.8) are not available, and 
this approach has also been used as an additional error control in the present case 
even when such estimates are available. 

Similarly, to obtain an approximate solution near the right endpoint, we consider 
an auxiliary problem on the subinterval xa < x < 1, where xR is chosen so that the 
interval [x,, 1 ] contains the bulk of the boundary layer region adjoining x = 1. In 
this case there are several different possibilities for the boundary layer structure near 
x = 1 depending on the given boundary values yP and y,, as described in Section 
For example, if there holds yP = yn, then there is no boundary layer near x = 1, and 
the outer solution provides an acceptable approximate solution up to the boundary at 
x = 1. In all other cases, when yP f yn, a boundary layer exists near x = I (at ieast 
for some components of the solution), and estimates near x = 1 analogous to (3.7), 
(3.8) can be obtained from [ 121. These latter estimates can again be used in the deter- 
m.ination of xR, and we let E*(x), p*(x) and n*(x) denote the solution functions of 
(2. I) on the subinterval [x,, l] subject to the boundary conditions 

(3.10) 

The problem (2.1), (3.10) is solved by multiple shooting after a stretching of the 
interval [xR, 11, analogous to the previously discussed situation near x = 0. As error 
controls in this case we compare the computed values of P*(+) and n*(xR) with the 
corresponding outer values p”(xR) and li(xR), and we compare the computed value of 
E*( 1) with the corresponding asymptotic result of [ 121. In all cases discusse 
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Section 4, acceptable values of xR were found to be obtained with 1 - xa on the order 
of IO,U to 15p. 

Note that we prescribe E* at x, in (3.10) rather than either p* =p” or n* = ii since 
either of these latter two boundary conditions alone at xR will generally lead to the 
numerical result p *-n*+DfO at xR, and then the structure of (2.1) leads 
numerically to an artificial boundary layer at xR which results in a poor approx- 
imation near xR. 

The voltage V= V(x) can be defined as 

and then the quantities 

V(x) := - jx E, (3.11) 
a 

I 
XL 

E and IE (3.12) 
0 I XR 

give measures of the voltage drops across the respective boundary layers near x = 0 
and x = 1. Even though the boundary layer intervals [0, xJ and [x,, l] are thin, 
with lengths on the order of ,u In ,K”, it follows from [12] that the integrals of (3.12) 
are of order unity as p--f 0. Hence if one wishes to compute accurate values of the 
voltage (3.1 l), then accurate values are required for the electrostatic field E(x) for 
values of x ranging over the entire interval 0 <x ( 1 including values of x within the 
boundary layers. 

Finally, it should be mentioned that approximate solutions can be alternatively 
obtained near the endpoints by using (almost) any initial value method to solve the 
initial value problems given in Sections 4 and 5 of [ 121 for the leading terms in the 
boundary layer corrections which can then be added to the outer solution functions. 
This latter approach is used, for example, in the algorithm of Flaherty and O’Malley 
[6, 91 which is designed to handle certain stiff boundary value problems, not 
including (2.1)-(2.3). However, the present technique involving the auxiliary 
boundary boundary value problems requires slightly less asymptotic analysis in 
practice, and it also has the merit of permitting the accurate numerical integration of 
the original system of differential equations (2.1) across the boundary layers. 

4. NUMERICAL RESULTS 

The analytical treatment given in [12] for the boundary value problem 
(2.1)-(2.3) shows that the following three possibilities exist for the boundary layer 
structure near x = 1, depending on the specified boundary values at x = 1: 

y, = yP * solutions have no boundary layer at x = 1; 

y, # yP = 0 z- only E and n, but notp, have 
boundary layers at x = 1; 

(4.la) 

(4.lb) 
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yn # yp > 0 * all components E, n andp have 
boundary layers at x = 1. (4.k) 

The qualitative nature of the boundary layer structure near x = 0 is independent of 
the case here, with all components exhibiting boundary layers near the left endpoint 
in each case. The above three possibilities are treated separately in the following 
numerical results which include representative examples of each of the three cases. 

The present numerical procedure as described in Section 3 permits one to handle a 
general doping profile D = D(x) and general current functions I,, =1,(x> and 
1, = I,(x). Mowever, in the following numerical results we have in every case taken 
the doping profile to be given as 

D(x) = 1 forO<x< I, (4.2) 

and we compute solutions for the following two current distributions: 

I,(x) = I,(x) = 1 forO<x<l, (4.3a) 

and 

I,(x) = 1.5 and I,(x) = 0.5 forO<x< 1. (4.3s) 

The small parameter ,U ranges from 10-’ to 10b6. It may be added that the problem 
(2.1~(2.3) has no solution for the current distribution I,, = Ip = 0 in the case yp = 0, 
as shown in 1121 and detected also numerically by the present algorithm. 

In every case the boundary value problems on [O, x,1 and [x, , I] subject to the 
respective boundary conditions (3.6) and (3.10) were solved using multiple shooting 
with I1 equally spaced nodes, with M = 11 in (3.2). 

The routine DIFSY 1 is used as the initial value method for the multiple s~oot~~~ 
algorithm. DIFSY I is a realization of Gragg/Buli~sch/Stoer extrapolation (cf. 
Bulirsch and Stoer [2]) with a stepsize control due to Hussels 171. DIFSYl is also 
used as the integrator for the outer problem (2.9). 

All computations were performed in FORTRAN IV with single precision ($&bit 
mantissa) on the CDC CYBER 175 of the Leibniz echenzentrum der 
Akademie der Wissenschaften. The solutions were computed with tolerances of 
EPS = BE-6 for the initial value problem (2.9) and EPS = l.E-4 for the bo~~~~r~ 
value problems (2.1), (3.6) and (2.1), (3.10). Th e notations TIME and NFC are used, 
respectively, to denote the total time (in seconds) required to solve a problem an 
number of function calls of the right side of the differential equations (2.1). 

Case (4. la). y, = yp. We consider the case Y,, = “rb = 0 in detail, and we also 
discuss briefly the case yn = yp = 1. From the analysis one expects a boundary layer 
only at the left side near x = 0. 

The discussion following (3.9) indicates that a suitable choice for xL can be taken 
as x, A 15,~. Table I shows the influence of the actual choice of xI. in the r 
computing time, the number of functions calls, and norm (&Q for y, = yp = 
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TABLE I 

TIME 
NFC E(O) 

norm (E) P(O) = 0) 

P 3=10 x”z15 5=20 
P P P 

Z,=I,= 1 
I, = 1.5 

Ip = 0.5 

10-2 0.26 0.31 0.39 -0.69190E2 -0.88975E2 
3325 4372 6115 0.99649 0.57729 
0.13E4 0.56E6 0.3 1E9 

lo-’ 0.28 0.36 0.39 -0.69938E3 -0.90094E3 
3154 5366 6067 0.99965 0.58243 
0.13E4 0.66E5 0.35E8 

lO-4 0.28 0.48 0.58 -0.70012E4 -0.90205E4 
3892 7410 9151 0.99996 0.58294 
0.12E2 0.62E4 0.82E7 

10-5 0.29 0.53 0.84 -0.70020E5 -0.90216E5 
4036 8216 13,748 1.0000 0.58299 
0.43 0.61E3 0.3 1E6 

10-6 xL too small 0.72 0.96 -0.70020E6 -0.90218E6 
11,140 15,275 1.0000 0.58300 
0.64E2 0.56E5 

sees that norm (E) increases with increasing values of xL, and there is a small range 
or bandwidth for .acceptable values of X, subject to requirements of accuracy (xL 
large enough) and computational efficiency (c+ small enough). The value xL = 15~ is 
satisfactory. This value leads to a computed electrostatic field which agrees at X, 
with the outer solution &z,) to at least two decimals in all cases. 

The last two columns of Table I contain the computed values of the solution 
functions at the left endpoint x = 0 in the two cases (4.3a) and (4.3b), with xL = 15,~. 
Here and below we often write E, p and n instead of *E, *p and *n for the computed 
solution functions of (2.1), (3.6). These computed values at the left endpoint are in 
good agreement with the corresponding asymptotic values obtained from [12]. 
Indeed, from [ 121 one finds for the exact solution the results 

E(O) = [Cl f W>l/fl~ p(0) = n(O) = c2 + O@> (4.4) 

with constants c1 and c2 given as 

cl = ID(O) [In%] +4j/~-2[p’(O)+n”(O)] 

c2 = &@j-qi$. 
(4.5) 
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In the present case the outer values are computed as 

F?(O) = D(0) SF(O) G 1.618034 in case (4.3a) 

- 1.268039 - in case (4.3b) (4.6) 

with yP = y, = 0, and then (4.5) and (4.6) lead to the values cI f - 
c2 * 1.0000 in case (4.3a), and the values c, k -0.90218, cz G 0.58300 in case (4.3b). 
The resulting asymptotic values obtained with (4.4) are seen to be in close a~eeme~t 
with the computed values listed in Table I, One can use (4.4~(4.6) to obtain ap 
imate values at x = 0 for any small values of jk 

Graphs of the computed solution functions are shown in Fig. 1 in the case 
yP = y, = 0 with p = lo-‘, where the two cases (4.3a3 and (4.3b) are indicated, 
respectively, by the dashed and solid lines. The solid and dashed lines coincide for the 
electrostatic field E within the accuracy of the graph. The boundary layer effects are 
sharper for smaller values of p, but the solution functions remain approximately 
unchanged away from the boundary layer region, and the qualitative behavior of the 
solution functions is the same for smaller ,u. 

An increase in the common value of yP = Y,, from 0 to any positive value, say 
yP = yn = 1, leads to solutions which are in qualitative agreement with those indicated 
in Fig. 1, except that the densities p and n are everywhere larger away from the 
boundary layer region while the electrostatic field E is everywhere smaller there, 

Case (4.lb). y, f yP = 0. In this case we consider the two examples yn = 0.5 an 
y,, = 1, with r, = 0 in both cases. From the analysis one expects E and pz to have 
boundary layers at both endpoints x = 0 and x = 1, hut g is expected to have a 
boundary layer only at x = 0. This behavior is verified below. 

If yP = 0 as in the present case, then the outer solution and the boundary layer 
structure at .x = 0 are independent of the value of yn, In particular one obtains the 

.2 .4 .6 1.0 

FIGURE 1 
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same results for the left boundary layer as in the case yP = y, = 0 considered above 
(cf. Fig. 1). Hence in the following we emphasize the boundary layer structure near 
x= 1. 

A suitable value for xR can be found with techniques similar to those already used 
above for x,, as discussed in Section 3. The value X, = 1 - 15,~ is satisfactory for the 
present examples as regards both accuracy and computational efficiency. This value 
of xR leads to corresponding values of TIME, NFC and norm (E) in the following 
ranges, for values of ,U between lo-* and 10W6: 

y" = 0.5 Y,= 1 

TIME 0.4-0.75 0.5-0.65 
NFC 5600-12,800 7300-10,500 

norm (E) 0.3E7-0.5E7 0.4E7-0.6E7 (4.7) 

Graphs of the computed solution functions are shown in Figs. 2 and 3 for the 
respective cases y,, = 0.5 and y,, = 1. In each case the dashed and solid lines 
correspond, respectively, to (4.3a) and (4.3b), as in Fig. 1, and the parameter ,u is 
taken as y = lo-*. 

Table II Lontains the computed values of the electrostatic field E at x = 1 in the 
different cases. By way of comparison one has the asymptotic result (7.12) of [ 121 
for the exact value E(l), from which we find 

E( 1) 2 [-0.43483 + O(U)]/@ if yn = 0.5 

G [-0.78340 f O@)]/p if y,=l, (4.8) 

which is in close agreement with the computed values listed in Table II. Note that the 
value E(1) is independent of the current distributions I,(x) and I,(X) to lowest order 

1.0 

I 
FIGURE 2 
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.2 .4 .6 .8 1.0 

FIGURE 3 

ut E(1) is sensitive in this case to the specified boundary value yn. Indeed, the 
doubling of yn from yn = 0.5 to y,, = 1 leads almost to a corresponding doubling in 
E(1). 

Case (4.1~). y,, # yP > 0. In this case we consider the two examples yP = 0.5 and 
yP = 1, with yn = 0 in both cases. From the analysis one expects all components of 
the solution to have boundary layers at both endpoints, and this is verified com- 
putationally. 

Suitable values for xL and X, were obtained using the technique described in 
Section 3. The values x, = lO,u, xR = 1 - 10,~ are satisfactory when yP = 0.5, and the 
values x, = 15~~ xR = 1 - 10,~ are satisfactory when yp = 1. These values of xL and 
xR lead to corresponding values of TIME, NFC and norm (2?) as summarized in the 
following table, for ,U between lo-’ and 10W6: 

TABLE II 

E(l) 
-- 

I, = Ip = 1 I, = 1.5, 1, = 0.5 

P y,=o.5 Y”= 1 y, = 0.5. Ya= 1 

10-Z -0.41702E2 -O.l666lB2 -0.41114B2 -O.l6?92B2 
1O-3 -0.43301E3 -0.78169E3 -0.433 10E3 -0.78183B3 
10-4 -Q.43464E4 -0.78322E4 -0.43465E4 -0.18324B4 
10-s -0.43480E5 -0.78338B5 -0.4348085 -0.7833KE5 
1o-6 -0.43482E6 -0.78339E6 -0.43482B6 -0.78339E6 
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Left Right 
boundary layer boundary layer 

TIME 0.3-0.7 0.25-0.5 
NFC 3000- 12,000 3500-10,000 

norm (E) 0.2E3-0.2E9 0.2E6-0.2E7 (4.9) 

Graphs of the computed solution functions are shown in Figs. 4 and 5 for the 
respective cases yP = 0.5 and y,, = 1. In each case the dashed and solid lines 
correspond, respectively, to (4.3a) and (4.3b), as before, and the parameter iu has 
been given the value +D = lo-*. 
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TABLE III 

m 
P(O) = W) 

E(l) 

I, = z, = 1 I” = 1.5, z, = 0.5 

P yp = 0.5 rp= 1 y, = 0.5 Yp = 1 

10-2 -0.62748E2 
1.2221 
0.41168E2 

10-3 -0.6339883 -0.59097E3 
1.2245 1.414 
0.4008583 0.70115E3 

1o-4 -0.63463E4 
1.2241 
0.39976E4 

1o-5 -0.63469E5 
1.2247 
0.39965E5 

1o-6 -0.63470E6 
1.2241 
0.39964E6 

-0.58516E2 
1.4121 
0.70965E2 

-0.59154E4 
1.4142 
0.70030E4 

-0.5916E5 
1.4142 
0.70021E5 

-0.59161E6 
1.4142 
0.70021E6 

-0.77931E2 
0.77215 
0.41221E2 

-0.78904E3 -0.7I625E3 
0.77575 0.95 106 
0.40089E3 0.7012153 

-0.79001E4 
0.77611 
0.39976B4 

-0.79010E5 
0.77615 
0.39965E5 

-0.79011E6 
0.77615 
0.39964E6 

-0.70778E2 
0.94828 
0.7 1024E2 

-0.11709E4 
0.95 134 
0.1003 lE4 

-0.71718E5 
0.95 137 
0.10022E5 

-0.71719E6 
0.95137 
0.70021E6 

Table III contains the computed boundary values E(O), p(O) = n(O), and E(1) in 
the different cases. At x = 0 one also has the asymptotic results E(0) = [c, + ~~~I/~ 
and p(O) = n(0) = c2 + O(U), w  h ere the constants c, and ci. are given as in (4.5) in 
terms of the computed outer values p”(O) and Z(0). Similarly, from Section 4 of [ 121 
one has the asymptotic result WI = ic3 -t Ocu)l/P with L”3 := 
{ 2 ln[ (1 + d-)/2] i- 2( 1 + yP - dm)} I”, where Y,, = 0 and D = 1. Table 
IV gives the outer values n”(0) and p”(0) along with the computed values of these 

TABLE IV 

I, = I, = 1 I, = 1.5, ID = 0.5 
- 

yp = 0.5 Yp= 1 yp = 0.5 yp = i 

ii(O) = 1.8228756 2.0000000 1.4232606 1.5741575 

NO) + d(O) 
Cl -0.63470 -0.59161 -0.79011 -0.71718 
c2 1.2247 1.4142 0.77615 0.95 137 
Cl 0.39964 0.70021 0.39964 0.70021 

58 1/42/2-a 
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constants c, , cl, c3. The computed values listed in Table III are seen to be in good 
agreement with the corresponding asymptotic values obtained with the constants of 
Table IV. 

5. A PHYSICALEFFECTOF SHOCKLEY ETAL. 

In early experimental and theoretical work on semiconducting materials it was 
discovered that, in a semiconductor containing substantially only one type of current 
carrier, say electrons, “it is impossible to alter the density of carriers by trying to 
inject or extract (only) carriers of the same type,” whereas “such (alterations) can be 
produced by injecting (carriers of) the opposite type” (Shockley et al. [ 11, p. 3481). 
In this section we show that the numerical results of Section 4 can be used to 
illustrate this physical effect of Shockley et al. within the framework of the present 
mathematical model. 

In the above we have taken the region 0 <x < 1 to correspond to the n-side of a 
symmetric diode, so that the semiconductor contains substantially electrons as 
current carriers for 0 < x < 1. 

In such a case if one injects or extracts only electrons at x = 1, one has the 
boundary condition 

This condition (5.1) holds in the cases illustrated in Figs. 1, 2 and 3, and one sees in 
these figures that the carrier densities p and n are indeed insensitive to the electron 
source strength yn for all x on any subinterval such as [0,x,] which excludes the 
boundary layer near x = 1. The electron density IZ is strongly sensitive to the source 
strength y, within the thin boundary layer adjoining x= 1, but neither p nor n is 
sensitive to yn away from this boundary layer if (5.1) holds for the n-type semicon- 
ducting material. This result, illustrated by Figs. 1, 2 and 3, is in agreement with the 
first part of the quotation from [ 111 given above in the first paragraph of this section. 

On the other hand if one injects holes into the n-type material, then one has the 
condition 

Yp > 0, G-2) 

as illustrated in Figs. 4 and 5 for the two cases yP = 0.5 and yP = 1, with yn = 0 in 
both cases. The densities p and n from Figs. 4 and 5 are shown superimposed in Fig. 
6 along with the densities from the earlier Fig. 1, in case (4.3a). In Fig. 6 the solid 
lines correspond to the case of Fig. 1 (y, = yn = 0), whereas the dashed and 
dot-dashed lines correspond, respectively, to the cases of Fig. 4 (y,, = 0.5, yn = 0) and 
Fig. 5 (y, = 1, yn = 0). One sees that the electron density II is strongly sensitive to the 
hole source strength r, for all x on any subinterval such as [0, xR] which excludes the 
boundary layer near x = 1, whereas the hole density p is strongly sensitive to yP for 
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FIGURE 6 

al1 0 < x < 1. Both densities p and YE are seen to be increasing functions of yP for all x 
(except for n(l) which is independent of y,,), in agreement with the analysis of [IZ]. 
These results, illustrated in Fig. 6, are in agreement with the second part of the 
quotation from [I l] given above in the first paragraph of this section. (Even more is 
shown in [ 121; the densities p(x) and n(x) are strictly increasing functions of Beth yp 
and y, for all x on compact subintervals of (0, 1) when (5.2) holds.) 

6. SUMMARY 

Am accurate, efficient algorithm is given for the numerical integration of the 
nonlinear singularly perturbed two-point boundary value problem (2. f )-(2.3) arising 
in the steady-state one-dimensional theory of semiconducting materials. The 
algorithm is based on a decomposition of the problem into certain sub~roblems as 
suggested by the asymptotic anaIysis of [12]. Multiple shooting is used to solve 
certain of the subproblems. The numerical results are in agreement with a striking 
physical effect of Shockley et al. 
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